

Specific Power Lay-out of Wind Turbines

Possible optimization reasons:

- Economic profit optimization for the wind farm operator
- Profit optimization for the manufacturer of the wind turbine
- Cost optimization of the energy transportation and distribution grid
- Energy cost optimization of a wind turbine/storage system
- Increase the supply reliability for an energy generating system using different energy sources
- ➤ Best fulfillment of a long term nationwide energy supply plan, e.g. a successful Energiewende (Energy Transition) in Germany
- Best lay-out to achieve the lowest energy costs for the consumer

Consequences

- ➤ All these optimization reasons will lead to different specific power installations of the wind turbines.
- The fulfillment of politically desired higher-level goals cannot be achieved by market driven conditions.
- Therefore the "Energiewende" in Germany needs clear guidance for the lay-out of the energy supply chain to meet the goal of a sustainable energy generation at affordable costs for the consumer.

Today's Situation in Germany

➤ With the today's regulations of the Renewable Energies Act (EEG), no possibilities exist to influence the wind turbine lay-out into the desired direction.

➤ Well designed participation conditions for a tender or auction system would allow to influence the wind turbine lay-out in the desired manner.

Typical Specific Power Installations

How to Find the Best Specific Power Installation

Influence of Weibull Distributions on Specific Power Installation

Specific Power Installation Tendencies

- •New wind turbine designs have about 20 to 30 % lower installed power per m² rotor disc area than before.
- Mostly achieved by increasing the rotor diameter and maintaining the generator power.
- •The result is a win/win situation: the manufacturer spends less money for the wind turbine manufacturing and the wind farm investor earns more energy due to the larger rotor disc area.

Specific Power Installation in Germany since 1992

Source: C. Ender, B. Neddermann, Wind Energy use in Germany, DEWI-Magazin 48, 2016

AEP Dependents on Specific Power Installation

Energy Production with -5% Wind Speed

Energy Cost of Wind Turbine/Storage Supply System

Effect of Specific Tender Conditions

Tender Conditions

- Define tenders/auctions for guaranteed energy supply within a certain +/- margin.
- Penalties for energy generated outside the margin.

Resulting Effects

- High capacity factors which lead to lower energy fluctuations (less penalties)
- Lower fluctuations cause reduced peek loads in the grid (less grid transportation capacity needed)
- Lower fluctuations result in lower storage capacity costs and more precise energy forecasts

Vielen Dank für Ihre Aufmerksamkeit